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Local Discovery of System Architecture - Application Parameter Sensitivity: 

An Empirical Technique for Adaptive Grid Applications* 

I.R. Corey, J.R. Johnson, J.S. Vetter 
Computing Applications & Research Department 

Lawrence Livemore National Laboratory 

Abstract 

This study presents a technique that can 
significantly improve the performance of a distributed 
application by allowing the application to locally adapt 
to architectural characteristics of distinct resources in a 
distributed system. Application performance is sensitive 
to system architecture- application parameter pairings. 
In a distributed or Grid enabled application, a single 
parameter configuration for the whole application will 
not always be optimal for every participating resource. 
In particular, some configurations can significantly 
degrade performance. Furthermore, the behavior of a 
system may change during the course of the run. The 
technique described here provides an automated 
mechanism for run-time adaptation of application 
parameters to the local system architecture. Using a 
scaled-down simulation of a Monte Carlo physics code, 
we demonstrate that this technique can conservatively 
achieve speedups up to 65% on individual resources and 
may even provide order of magnitude speedup in the 
extreme case. 

1. Introduction 

The interaction between the parameterization of an 
application and the architectural characteristics of the 
system on which the application is running is of 
fundamental importance to the overall performance of 
the application. For a distributed application, 
performance inequities between different resources due 
to favorable and unfavorable application parameter - 
system architecture pairings can significantly affect 
overall performance. 

* This work was performed under the auspices of the U. S. 
Department of Energy by the University of California Lawrence 
Evermore National Laboratory under contract No. W-7405-Eng- 
48. 

There is currently no general theoretical model for 
predicting performance based on parameter - 
architecture pairings. However there has been success 
with using empirical methods, ([l], [5], [SI, [lo], [13]). 
These empirical systems perform extensive testing of a 
range of parameter values when they are installed on 
distinct architectures. In a heterogeneous, distributed 
environment, performing the empirical test at installation 
time is neither practical nor is it always possible. A 
single parameter configuration for the whole application 
will not always be optimal for every resource 
participating in a distributed computation. Resource 
characteristics may not be known at scheduling time and 
resources may come and go throughout the computation. 
In addition, executables may be staged rather than 
existing as highly tuned software already installed on a 
resource. 

By using a combination of micro benchmarking, 
performance assertions and sensitivity analysis, the 
technique presented here allows a locally scheduled 
application component to adapt at run-time to the 
resource to which it has been assigned and then continue 
monitoring its performance and adapt as necessary. This 
technique is an extension of earlier empirical studies in 
that it operates on a large-scale application and is applied 
at run-time rather than install-time. 

The technique works as follows, (Figure 1): The 
application code is instrumented with performance 
assertions at positions in the code where system and 
problem parameters can be dynamically varied, (e.g. 
between time-steps, or modes such as grid generation 
and time dependent simulation). 

When an instance of the application is deployed on a 
local resource in a distributed environment, it first runs a 
micro benchmark varying problem parameters one at 
time and finds the parameters that have the greatest 
affect on performance. This micro benchmark can either 
be performed within the application itself or by a 
separate benchmarking tool included as a library to the 
application. 

From the aggregate benchmark data the best 
parameter configuration for the local resource is 
determined and the application is modified to use this 
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configuration. In addition, performance assertion bounds 
and handlers are set using the micro benchmark results. 

After the micro benchmark phase is complete and 
the configured application is running, if the code fails to 
meet a performance assertion based on the original micro 
benchmark, then control is transferred to a function 
registered with the performance assertion that decides 
whether or not to modify a parameter value. Should the 
function determine that it is necessary to vary a 
parameter value, then additional benchmarking is 
performed beginning with the parameters to which 
performance is most sensitive. A new configuration is 
constructed and the application is modified to reflect the 
changes in the system behavior. 
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Figure 1. Illustration of Adaptive Application 
Technique 

2. Related Work 

An initial attempt at a formal framework for 
parameterized architecture adaptive algorithms was 
described by Ueberhuber and Krommer, ([SI). More 
recently, tangible empirical results on homogeneous, 
static architectures have been presented in ([l], [5], [9], 
[13]). Netsolve, ([2]), is a network tool designed to map 
a problem to the best available resource in a distributed 

environment based on network performance. NWS, 
([ 14]), and Globus ([4], http://www.globus.org) provide 
information on the status of networks and the availability 
of servers. The &ADS project 
(http://nhse2.cs.rice.edu/~rads/) is addressing issues of 
application performance and performance contracts on 
computational grids. Recently the &ADS project has 
presented a framework for adaptive Grid programs, ([7]). 
Code instrumentation and dynamic steering is explored 
in U61, [111). 

3. Monte Carlo Simulation 

The simulation used here is designed to emulate a 
large-scale Monte Carlo physics code under 
development at LLNL. The simulation models the 
computation-communication structure of the Monte 
Carlo code, but does not perform any of the physics. It 
is primarily used for rapid prototyping and testing new 
communication ideas before they are fully implemented 
in the larger Monte Carlo code. Both the actual code and 
the simulation are structured in a communicate, work, 
reduce cycle. This iterative structure simplifies the 
adaptive process by allowing the adaptation to take place 
between iterations. 

For this experiment only communication parameters 
were investigated. Both the simulation and the Monte 
Carlo code have been constructed so that it is easy to 
dynamically change communication and MPI parameters 
(e.g. type of send, buffer size, etc ...). 

4. Micro Benchmark Description 

For the results described here three separate 
experiments were run varying, message size, type of 
send, “message factor” and “send buffer.” 

For the first set of experiments, message size was 
held constant at 1 MB. In the second set, it ranged 
between 1, 2, 4 and 8 MB. In the third set, it ranged 
between 64, 128, 256, and 512 KB. Type of send was 
varied between Irsend, Isend, Issend. Message factor, is 
the number of equally sized units by which the message 
is divided. For example, with a 1MB message, a 
message factor of 2 sends 2 512K messages. A message 
factor of 4 sends 4 256K messages, etc. The results 
from all experiments presented here use message factors 
of 1,2,4 and 8. Send buffer is the number of sends held 
in the buffer before waiting. The results presented here 
use send buffers of 0,4,7, 10, in the first experiment and 
0, 32, 64, and 96 in the second and third. Holding all 
other parameters constant and just varying these four one 
at a time generated a total of 48 tests (4*4*3) per run on 
each of 2 architecture in the first experiment and 192 
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(3*4*4*4) tests on each of 3 architectures in both the 
second and third experiments. 

The first of these tests were run on two distinct 
architectures: 3 nodes/:! processors per node of IBM’s 
ASCI Blue Pacific and 4 processors on a single node on 
LLNL’s GPS Cluster (Compaq ES45 with 4 lGHz 
EV6.8 processors). The second and third group of tests 
were run on 2 nodes / 2 processors per node of IBMs 
ASCI Blue Pacific, 2 nodes / 2 processors of IBM’s 
ASCI White and 4 processors on a single node of 
LLNL’s Tera Cluster which consists of 32 Compaq 
Alphaserver and DS20 systems. For each test we ran 
the code for 100 iterations and measured wall-clock 
time, MPI-time and throughput. 

5. Results 

Results described here are from multiple runs of the 
micro benchmark using the simulation code. 

The first thing the results show is that each 
architecture has a distinctive ‘signature’ that can be seen 
by plotting total application time as a function of the 
application parameters, (Figure 2, Figure 3). The x-axis 
in these figures is an index into the parameterization, 
while the y-axis is the total run-time associated with the 
parameterization. The sort order for the x-axis is: (send 
type, message factor, send bufler, message size). For 
example, the first four points on each of the graphs in 
Figure 2, correspond to the following parameterizations 
(Zrsend, I ,  0, I), (Zrsend, I ,  0, Z), (Zrsend, I ,  0, 4) and 
(Zrsend, I ,  0, 8). At the 5* point, send buffer varies from 
0 to 32. At the 17* point, message factor varies from 1 
to 2, and at the 65* point send type varies from Irsend to 
Isend. 

While these signature capture the distinction 
between architectures, similarities can also be seen with 
the greatest similarity between ASCI Blue and ASCI 
White. In all cases, send type stands out as a distinctive 
feature and forms the 3 prominent groupings seen in 
each of the figures. For a given send type in the second 
series of experiments, message factor and message size 
are the dominating performance features on the ASCI 
machines with message factor = 1 outperforming 2, 4 
and 8 in the second series of experiments, (Table 1). For 
the third set, message size dominates performance. On 
the Compaq machines, message size also has a more 
noticeable impact within send type. 

Drilling down into the data makes these 
observations clear and shows that although ASCI Blue 
and White have similar profiles, there are important 
performance differentiators between these two 
architectures. 

Table 1. ASCI White message factor 
performance per send type. 

5.1 ASCI White & Blue 

From the signature graphs, one can clearly see the 
three major groupings due to send type (Irsend, Isend, 
Issend), (Figure 2). Within each of these groups, the 
lower cluster of points are message factor = 1. An 
important distinction between White and Blue can be 
seen in the White data for Irsend, message factor 8, (end 
of the first grouping in Figure 2), which shows a stronger 
sensitivity to message size than Blue has. Another 
distinction can be seen within the message factor 
grouping. On White the points on the bottom of the 
grouping (i.e. the best performing) all correspond to 
message size of 1, while those along the top of the 
grouping (i.e. the worst performing) all correspond to 
message size of 8. In contrast, on Blue, the best and 
worse performing message sizes per message factor 
differ per message factor. For message factor >1 they 
are the same as White, however for message factor = 1, 
they are obtained at message size 4 and 2 respectively. 
On both White and Blue, send buffer size has almost no 
effect. 

From this we can see that changing message factor 
from 8 or 4 to 1 on White while keeping all other 
parameters constant can improve performance by a 
significant amount, (Table 2). 
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Table 2. ASCI White speedup by changing 
adapting message factor 

Send 
Irsend 

Similarly, varying message factor on Blue can 
produce significant speedup, (Table 3). 

MB buffer Clock(s) 
8 1 0  113.88 

I Type of I Size I MF I Send I Wall I 

I I I 

Irsend 1 8  1 8  1 0  

Isend 4 1 6 4  

Isend 4 8 6 4  

Speedup 

Speedup 
157.55 
38 % 

104.325 

147.125 

41 % 

Send 
Irsend 

Within a single message factor grouping, a change 
in message size can also have a noticeable effect, (Table 
4). 

KB buffer Clock(s) 
512 1 32 30.385 

Type of 
Send 
Irsend 

Isend 137.8 

Isend 154.775 

Size MF Send Wall 
MB buffer Clock(s) 
1 2 0  138.15 

Isend 512 2 32 
Isend 512 8 32 

Results on ASCI White fiom the thiid series of 
experiments varying message size from 64K to 512K can 
be seen in Figure 4. This also offers a distinctive 

49.91 

42.04 

signature. In contrast to the first series, message size 
rather than message factor is the dominant factor for 
performance. Varying send type does not offer variation 
in performance. However, as in the first set of tests, 
(Figures 2 and 3), message factor does contribute 
significantly to performance, (Table 5). Contrasting the 
results for message sizes greater than lMB, message 
factors of 1 and 8 perform better than message factors of 
2 and 4 for all problem sizes tested in the range 64K - 
512K. Once again, send buffer has no noticeable effect 
on performance. 

In the third series of experiments, ASCI Blue results 
show a very similar pattern to ASCI White, (Figure 5), 
with message size being the primary performance driver 
but message factor making a significant difference for a 
given message size. (For Figures 4 and 5, parameter 
index sort order is send type, message size, message 
factor, send buffer). An interesting distinction between 
White and Blue is in the case of message factor 4. On 
ASCI Blue, a message factor of 4 was consistently the 
worst for a given send type and a given message size, 
whereas on ASCI White, message factor 2 was the worst 
for each send type and message size. 

I Type of I Size I MF I Send I Wall 

Speedup 12 % 

Irsend 49.91 

Speedup 
Isend 35.23 

I I I I I I I Isend I512 12 I32 I 49.865 I 
I I 

Speedup 
Issend 34.435 

Issend 42.07 

I Speedup 122% I 

Speedup 124% I 
Table 5. ASCI White speedup by adapting 

message factor 

5.2 Compaq 

The results on the Compaq machines are not as 
separable as those on the IBM ASCI machines. 
However, discernable patterns are still evident. Like the 
ASCI machines, there is an observable distinction 
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between send type, more noticeable in the signature 
graph from the first experiment with the extreme values 
removed (Figure 3). Message size is a stronger 
differentiator than message factor. For Issend, a 
message size of 4MB consistently performed the best. 
However, for Irsend, 4MB almost always performed 
worst, but 1MB message size consistently performed the 
best. For Isend, 8MB was the best message size, (Table 
6). 

Type of 
Send 
Irsend 

Irsend 

Issend 

Isend 

Size Max(s) Min (s) Ave(s) 
MB 
1 168.65 127.846 140.98 
4 1196 139.729 614.157 
4 164.483 149.004 154.31 
8 220.842 166.733 184.09 

I I I I I I 

Architecture 

ASCI White 

ASCI Blue 
Tera 

GPS 

Table 6. Compaq Tera Cluster performance as 
a factor of message size 

Worst Best Params Speedup 
Params Performance 
Performance (s) 

102.225 58.255 75% 
158.455 104 52% 
2034.321 100.521 20x 
525.888 144.858 3 .6~  

(s) 

The third set of tests with smaller message sizes also 
shows sensitivity to both send type and message size, 
(Figure 6). For a 64K message, with message factor 1 
and send buffer 0, Isend performed remarkably better 
than other send types, (Table 7). There is also a 
significant speedup from the fastest Irsend to Isend. 

Send 
Irsend 

KB buffer Clock(s) 
64 1 0  42.946 

I I I I 

Isend 164 11 10 17.158 
Speedup 
Issend 64 1 0  
Isend 64 1 0  

speedup 
Irsend 164 11 l o  

6x 
27.029 
7.258 
58 % 

16.752 
Isend 

The horizontal lines in Figure 6 correspond to 
distinct message sizes and the stability in these regions 
clearly show the sensitivity to message size. One 
interesting distinction is for Isend, message size 256K, 
(points 97 - 112 along the x-axis of Figure 5). The 
higher horizontal line in this grouping corresponds to 
message factors of 1 and 2, while the lower line 

64 1 0  7.158 

corresponds to message factors 4 and 8 with a 20% 
performance jump from the fastest in the message factor 
1 or 2 group and the slowest in the message factor 4 or 8 
group- 

The results from the smaller GPS profile show a 
similar sensitivity for send-type but send buffer had a 
more significant effect on performance with all instances 
of send buffer=O significantly outperforming tests with 
send buffer > 0, (Table 8). 

Speedup 

Min (s) 

216.121 144.858 

525.888 325 -55 8 

>2x 

I I 

150% I I Minimum speedup 
Table 8.GPS speedup adapting send buffer size 

For each of the architectures, the difference between 
the worst parameterization and the best parameterization 
is quite significant, (Table 9) 

6. Conclusions 

These results show that for a given application, 
different architectures exhibit sensitivity to different 
parameters in a program’s configuration. By changing 
the appropriate parameters for the given architecture, 
performance can be significantly improved. In the 
simple simulation studied here, a conservative speedup 
of from 12 % to 65% on a single resource is achieved. 

While a good configuration for a particular 
architecture can often be discovered analytically, the 
complexity of building a rules system to handle every 
possible scenario can be unwieldy. Sometimes results 
are unexpected but not unreasonable. This complexity 
and the fact that in a heterogeneous distributed 
computing environment, resource characteristics may not 
be known even at run-time lead to the conclusion that an 
empirical approach is the best for dynamic application 

5 



configuration. The simulation described here shows that 
running application-specific micro benchmarks on the 
actual system offers a good mechanism for determining 
the effect of parameter-architecture pairings and finding 
parameters to which the architecture is most sensitive 
thus allowing the application to run using a good 
configuration on the local system. 

For complex codes, a stand-alone micro benchmark 
such as the simulation described here is a good tool for 
discovering the behavior of a system. For codes that 
have clear delineation of behavior (e.g. a computation 
phase followed by a communication phase), the code 
itself may be used to perform the initial micro- 
benchmark. 

One of the challenges in evaluating micro 
benchmarks is choosing a metric to evaluate the system. 
Wall clock time is not always the best metric. This 
difficulty can be addressed by including data from 
system utilities such as hardware performance counters 
in the benchmarking phase. This benchmark data can be 
used to construct performance assertions that are inserted 
between time-steps to determine whether the behavior of 
the system is .consistent with the original micro 
benchmark. If not, the performance assertion will 
execute a handler function to rerun the micro benchmark 
and re-configure the application if necessary. 

Performance assertions [12] are an important 
component of this technique since they allow the 
application to continually monitor its operation and 
adapt as necessary. Performance assertions measure 
empirical performance data for individual operations 
within the application and if those measurements fail 
some user-defined expectation, they react using a variety 
of methods. The performance expectation is an 
expression that compares the measurements using a 
relational operator. The expression can include measured 
performance data, architectural specific data (e.g., peak 
rate), micro benchmark data (e.g., sustained rate), 
constants, and various operators. The method that we use 
here invokes an application subroutine to affect a change 
in the application. A real-world application may change 
its behavior over the course of the run and a different 
configuration may be optimal. As an example take the 
profile for ASCI White Irsend: If the program were to 
change its message size from 8MB to 1MB and the 
current message factor were 8, there would be a 
noticeable degradation in performance. For this example, 
performance assertions would invoke a user-defined 
subroutine that modifies the parameters to which the 
particular architecture is most sensitive: in this case, 
message factor or send type. For either case, 
performance would improve. In this way, performance 
assertions assist the application in adapting to its local 
resource throughout the course of the run. 

The micro benchmark is essential in building the 
performance assertions and constructing the handler 
functions that adapt the application while it is running. 
In the results presented here, the micro benchmark 
shows that send buffer does not have any appreciable 
effect on performance for the IBM machines, however it 
does on the Compaq GPS. Thus when adapting the 
application on the IBM machines, message size and 
message factors are the parameters that are modified first 
to improve performance, while on the Compaq, send 
buffer may be retained as a parameter to vary. Similarly, 
on the IBM machines, varying send type does not have 
as direct an effect on performance as does message size 
and message factor, but it does show some performance 
variation on the Compaq Tera cluster. The results of the 
micro benchmark yield a list of parameters ordered by 
sensitivity which allows the adaptation phase to start by 
manipulating the parameters to which the application - 
architecture pairing is most sensitive and essentially 
ignore (unless everything else fails) the parameters to 
which it is least sensitive. 

7. Futurework 

The results presented here are based on a handful of 
communication parameters. There are many more 
parameters that can be varied. In addition there are non- 
communication parameters that may also significantly 
affect performance (e.g. threads, problem size, array 
strides and blocking etc ...). Choosing the best 
parameters to use in the micro benchmark is an area for 
further exploration. 

Another area that needs additional study is the 
construction of the adaptation functions registered with 
the performance assertions. The approach described 
here is a ndive one that simply starts with the most 
sensitive parameter and varies it until something 
improves. If there is no improvement, it switches to the 
next most sensitive parameter and so on. A more 
sophisticated sensitivity analysis may offer greater 
insight and allow the application performance to 
converge faster. As can be.seen in this study, some 
variations are non-linear (the effect of message factor on 
the ASCI White and Blue results presented in Figure 4) 
or singular (sensitivity of ASCI White to problem size 
only for message factor 8, Irsend in Figure 2) so finding 
a good sensitivity model that can guide the adaptation 
phase is an important area for further research. 

Extending this study by including more exotic 
architectures might be fruitful. The fact that such similar 
architectures as those used here can have such distinct 
profiles illustrates the usefulness of this technique, but 
comparing sharply contrasted architectures may lead to 
additional insight. 

6 



The Monte Carlo physics code has been 
instrumented and tests are being run to see how the full 
application results compare to the simulation results. 
The next step after this is to implement this study in a 
fully distributed testbed to explore how the local 
adaptation contributes to overall performance 
improvement. 
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